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Internal symmetries such as isotopic spin are not necessarily arbitrary constraints to be imposed at the 
beginning of a calculation. The bootstrap requirement that all particles be determined as composite states 
of one another leads naturally to symmetric solutions for masses and coupling constants. 

I. INTRODUCTION 

PHYSICAL systems are characterized by quantum 
numbers of energy, momentum, spin, and parity, 

whose origin is well understood; they arise from assumed 
symmetries of space-time. Some systems are also char
acterized by the internal quantum numbers of isotopic 
spin, hypercharge, and, more generally and less exactly, 
unitary spin, whose origins are less clear. We believe 
that these quantum numbers and the associated sym
metries are already implied by the bootstrap mechanism 
of ^-matrix theory.1 There is no need for additional 
principles either inside or outside quantum theory to 
explain them. 

The fundamental point is this: The internal sym
metries can be expressed as equalities among certain 
masses and among certain couplings. But the values of 
these masses and couplings are not inserted into the 
theory as initial data; rather they emerge from a self-
consistent calculation. Let us anticipate that in a fully 
self-consistent universe there is room for a multiplicity 
of particles of the same species, that is, of the same spin 
and parity. The formal principles which instruct us how 
to determine the masses and couplings of particles of 
like species possess a symmetry with regard to these 
particles. That such symmetries lead to equality among 
the masses and interactions of particles of like species 
need not be regarded as a freak accident, but may well 
be the preferred possibility. 

In the present paper this quite general notion will be 
explored only with regard to pion-nucleon interactions 
and isotopic symmetry. 

II. BOOTSTRAPS FOR PION-NUCLEON SYSTEMS 

Imagine that a search is made for the simplest uni
verse which includes spin J particles, but that the 
attempt to construct such a universe self-consistently, 
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1 The general philosophy of bootstraps has been described in 

various papers, for example, F. Zachariasen and C. Zemach, Phys. 
Rev. 128, 849 (1962). 

in the bootstrap sense, with a single spin \ particle 
fails. Next, one might consider two such particles; call 
them nucleons and label them p and n. Space-time sym
metries require that we consider the antiparticles ft 
and p at the same time. 

Now we ask what additional stable particles must be 
considered so that the family of particles as a whole 
is closed, i.e., so that each particle is, in fact, a bound 
state in one of the channels denned by the family. One 
can define, and perhaps even solve, a theory in which no 
additional particles are present, and in which each nuc-
leon is a bound state of two nucleons and an antinucleon. 
One alternative is to suppose that stable states of nuc-
leon-antinucleon systems, i.e., ir mesons, also exist. 
Proceeding to examine all hypothetical systems in 
order of their (apparent) simplicity, we may first sup
pose that there is only one such meson, 7r°, which couples 
to both pp and nn. Then p is a bound state of pirQ (and 
of all channels coupled to pir0 as well), n is a bound state 
of fiT°, and 7T° is a bound state of pp and nn. Thus 7r° 
must be its own antiparticle. 

Figure 1 displays the lowest order-force diagrams 
(diagrams with a "left-hand" cut) leading to dynamical 
equations for the p, n, and ir° bootstraps in this model. 
Figure 1(d) is included in the 7r°-strap diagrams to il
lustrate that pp and nn are indeed coupled. 

Still another possibility is that p and n are directly 
coupled through "charged" poins and that 7r° is not 
present. Thus we have a TT+ as a bound state of np, 
and necessarily, we have its antiparticle IT, with the 
same mass, coupled to pn. Figure 2 shows the lowest 
order diagrams for the various straps. 

To test these schemes fully would require calculations 
beyond our powers; the most pleasing result would be 
that such self-supporting mechanisms cannot exist be
cause the resultant forces are either repulsive or too 
weakly attractive, and that this is the reason that they 
do not occur in nature. 

Our search then brings us to the observed case of two 
nucleons and three pions. The pions are anticipated to 
be of like species and, in fact, bound states of a single 
spin-parity nucleon-antinucleon partial wave (the x5o 
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FIG. 1. Lowest order-force diagrams for a system con

taining only p, n, and 7r°. 

wave). The couplings are specified by the interaction 
scheme 

gcpnw++gcnpir-+goppir0+hQnn'n*), (2.1) 

which may be regarded as an interaction Lagrangian 
in a field theory, but which the "pure" ^-matrix theorist 
will prefer to interpret with statements about singulari
ties of physical scattering amplitudes. We suppose, in 
any case, that (2.1) defines a meaningful dynamical 
structure whose self-consistency can be tested by calcu
lation. The dependence of (2.1) on spin matrices is not 
indicated explicitly. The coupling constants will be real 
by time reversal invariance. The nucleon masses, Mn 

and Mp, are not yet assumed equal, nor are the various 
coupling constants. However, CPT requires x + and ir~ 
to have the same mass /xc, and the same coupling gc to 
pn or ftp, respectively. 

Consider now the dynamics of the p strap, by which 
we mean the dynamics of reactions with quantum 
numbers of p. Some of the forces are illustrated in Figs. 
3 (a) and 3 (b). By looking at poles and residues of the 
amplitudes for 

T°+p <-» T°+p, (2.2a) 

v°+p^ir++n9 (2.2b) 

ir++n<^>w++n, (2.2c) 

and imposing self-consistency, one obtains expressions 
for Mp, go2, gogc, gc

2 having the form 

Mp=Fa(Mp,Mn,v>c,tJ>o,gc,go,ho), (2.3a) 

go2 = Fb(Mp,Mn,iJ>cJv>o,gc,gQM, (2.3b) 

gogc = Fc(Mp,Mn,fj,c,fio,gc,go,ho), (2.3c) 

g2 = Fd(Mp,Mn,fjic,fJ.o,gc,go,hQ). (2.3d) 

Only the sign of go relative to gc is relevant; let gc be 
positive so that the sign of go is also fixed. Of course, 
Fc

2 = FbFd will hold identically and does not constitute 
and additional relation. A similar procedure with the 
n strap yields expressions for Mn, etc. But the n problem 
is transformed into the p problem by the following 
interchanges of notation in (2.1): 

p <-» n (including Mn <-> Mp), 

TC~ <-> TT. 

Then we must have 

Mn=Fa(Mn,Mp,iJic,iJ<G,gc,ho,go), (2.4a) 

ho2=Fb(Mn,Mp,iJLc,fjLo,gc,ho,go), (2.4b) 

hQge=Fe(Mn,Mp,iic,no,gc,ho,go), (2.4c) 

g2=Fd (Mn,Mp,fic,fM0,gc,ho,go). (2.4d) 

From Eqs. (2.3), eliminate go, ho to obtain an equation 
of the type 

Mp= $(Mp,Mn; MoMo,gc). (2.5a) 

The same treatment of Eqs. (2.4) yields 

Mn= ${Mn,Mp; Mc,Mo,gc) (2.5b) 

with the same function $. By considering simple models, 
of the N/D type, for example, one may convince oneself 
that (2.5a), (2.5b) are meaningful equations, not identi
cal, and for fixed values of fxc, /xo, and gc have a discrete 
number of solutions, if any, for Mn and Mp. An ex
ample of such a model is discussed in detail in the next 
section. Equation (2.5a) represents a curve in the Mp, 
Mn plane and (2.5b) represents the reflection of that 
curve through the line Mp=Mn- Where these curves 
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FIG. 2. Lowest order-force diagrams for a system 
containing only p, n, TT+ and ir~. 
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FIG. 3. Some lowest order-force diagrams for the 3-pion, 

2-nucleon system. 

intersect there is a possible pair of values Mp, Mn. If 
either curve goes through the line Mp=Mn, the two 
will intersect there yielding a solution with Mp=Mn. 
For a large class of functions, the only possible solution 
to (2.5a) and (2.5b) is Mp=Mn. In this way equality 
of the nucleon masses may arise naturally from a dy
namical calculation. We have not shown that Mn and 
Mp must be equal, but that this fact of nature can be 
the plausible outcome of the calculation rather than a 
freak accident. 

A similar manipulation of Eqs. (2.3) and Eqs. (2.4) 
demonstrates the plausibility, though not the necessity, 
that go2 = ho2 or go=zLh0. 

The G transformation is usually defined on nucleons 
in such a way that nucleon states are replaced by their 
antiparticle states with charges and phases adjusted as 
follows: 

-P, 

P-
n- -p. 

(2.6) 

Then the following states, in the xSo partial wave, have 
negative G parity: 

np, (pp—nn)/^J2, pn, (2.7a) 
while 

(pp+nn)/^/2 (2.7b) 

has positive G parity. Thus 7r+ and w~ have negative G 
parity, as does w° if go — — ho. G parity of the Lagrangian 

is conserved, of course, regardless of whether go=+ho 
o r go=—ho. We shall assume hereafter that Mn=Mp 

and go= —ho do emerge from the bootstrap calculations 
as has been made plausible. There may well be another 
meson, the rj, coupled to (pp+nn)/y/2. I ts presence 
would affect the dynamics, but not the symmetry 
properties of the odd G-parity states, so that it is ir
relevant to the subsequent arguments. 

The result so far constitutes charge symmetry; to 
establish charge independence, we consider the pion 
straps. We first define new pion states of definite mass 
Mcby 

7^=i(*+-ir-)/V2, 

and then rewrite (2.1) in the notation of isotopic 
spin: 

g1Nr1NT1+g2Nr2N7r2+goNTzNirQ, (2.8) 
where 

gl = g2 = gc/^2. 

N stands for the isospinor with components p, n. We 
write /xi, /X2 for the masses of the ir1, T2 although, of 
course, Mi=M2=Atc. 

From the poles and residues of the amplitudes for 

we obtain, as before, expressions for /xi,'gi2 of the type 
(we have set Mp=Mn=M): 

Mi=/a(/n,M2,Mo,gi,g2,go,M), (2.9a) 

gi2 = fb(tn,H2,no,gi,g2,go,M). (2.9b) 

Next, change the description of the nucleons, defining a 
new isospinor Nf by the following two-step process: 
__ (a) an isotopic rotation of the nucleons such that 

NTIN-^-N'TZN', i?r2iV r->-iV'r2iV / , and NT^N'-> 
—N'TIN'. In three-dimensional isotopic space, this is a 
rotation by 180° about the line x+z=0, y=0. And then 

(b) a G transformation of the nucleons as defined in 
(2.6). 

Then (2.8) takes the form 

glN
,rzNfw1+g2N/T2NfT2+goN,r1N

/7r\ (2.10) 

Since (2.10) is formally identical to (2.8) under the 
substitutions 

TT1 <-> 7T° (with m <-> JJLQ) , 

we have, also, 

MO=/aO*0,M2^1,gO,g2,gl,M) , 

g02 = fb(M>0,P2,Pl,gO,g29gl,M) . 

(2.11) 

(2.12a) 

(2.12b) 

The elimination of gi2 and go2 from Eqs. (2.9) and Eqs. 
(2.12) yields equations of the type 

Mo=JWMi;/*2,g2,Af), (2.13a) 

M i = J W M O , ; H2,g2,M). (2.13b) 
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From these, as before, we infer the plausibility of MO=AH. 
The same argument suggests that go2 = gi2 = igc2 is a 
natural consequence of the dynamics. Then, if g0 and 
gc have the same sign, the interaction coincides with the 
customary isotopic-spin invariant pion-nucleon inter
action. If go and gc have opposite signs, this is also 
true except we must identify the n states with protons 
and the p states with neutrons. 

Notice that in order to infer the likelihood of isotopic 
invariance, it was not necessary to consider all isotopic 
rotations or even infinitesimal ones, but only two permu
tation operations. This will not be surprising to those 
who remember that the original inference of isotopic 
spin from experiment rested solely on the equivalence 
of pp and nn forces and the equivalence of pp and pn 
forces.2 

The possibility of bootstrap theories embodying iso-
spin symmetry is, of course, well known. The primary 
aim of the present discussion has been to show how dy
namics may rule out other alternatives. 

III. A MODEL 

We shall now illustrate how the abstract arguments 
of the previous section, involving the fictitious particles 
x1 and 7r2, take form in a simple model calculation. 

In the model, we shall deal only with the second half 
of the problem. Suppose that the first results (charge 
symmetry) have already been proved: namely, Mn—Mp 

and go=—ho. (We assume the case go=+^o has been 
disposed of.) I t is important to emphasize that Mn—Mp 

and go= —ho are not to be considered as postulates, but 
are expected to follow from an explicit dynamical 
calculation of the nucleon strap. In fact, we could have 
constructed a model analogous to the one described be
low which predicts an explicit form for Eq. (2.5) and 
from which, independent of any assumptions on the 
pion masses, we could deduce Mn = Mp and go=—ho. 
We calculate the NN partial wave with the space-time 
quantum numbers of the pion by the N/D method, as
suming that the lowest order exchange diagrams are 
sufficient to define the forces (left-hand cuts) which 
bind ftp to form 7r+ [Fig. 3 (f)] and which bind pp and nn 
to form 7T° [Figs. 3(c), 3(d), 3(e)]. This is, of course, a 
very poor approximation dynamically, but is still ex
pected to contain the symmetries under discussion. 
Finally, we approximate the left-hand cut by a single 
pole. This pole must lie to the left of the bound-state 
poles we seek. 

For a given diagram, we shall place the pole at 
s = st—4/x2, where /z is the exchanged pion mass, and 
st = 4:M2 is the threshold energy squared. 

Then the Born amplitude for the process 

is given the form 
p+n*-> p+n (3.1) 

tB+(s) = gM/(s-Sn), (3.2) 

where s is the square of the center-of-mass frame energy, 
Sn^St—4/uo2 is the pole position for neutral pion ex
change, and A is some kinematical factor. A may, in 
principle, be a function of the exchanged mass, but we 
lose little generality by taking it to be a constant. A 
must be positive to produce an attractive force. The 
full amplitude is now represented by 

t+(s) = N(s)/D(s). (3.3) 

We use the following unitarity condition 

Imt+=(s-st)$\t+\2 for s>st. (3.4) 

Then, in the usual way 

N(s) = tB
+(s), (3.5) 

D(s) = l 

We define 

•ds'. (3.6) 
s)(sf—sn) 

Zn=(St — Sn)h, (3.7) 

z=(st-s)*, (3.8) 

z+={st-^)K (3.9) 

Substituting (3.5) into (3.6), we have3 

Dtf^l-gMKz+Zn)-1- (2**)-1]. (3.10) 

The output amplitude [annihilation graph, Fig. 4(d)] 

is 
*out + =-gcW(*-Mc 2 ) , (3.11) 

where B is some other kinematical factor. The T+ mass 
is determined by the condition 

#(Mc2H0, (3.12) 
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FIG. 4. Annihilation graphs in the NN straps. 

2B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936). 
3 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin, Inc., New York, 1961), p. 53. 
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and the pnw, coupling by 

gc
2B=-N(^)/D'(»c

2), (3.13) 

where D'(s) = dD(s)/ds. The explicit solution is 

z+=zn(go2A-2zn)/(go2A+2zn), (3.14a) 

gc2B=gMz+/zn. (3.14b) 

In this way the charged pion parameters are deter
mined from the input 7r° parameters. We can now add 
them to the input information to calculate output values 
for MO2 and go2. All four quantities will then be deter
mined by a reciprocal bootstrap mechanism. 

The 7T° strap is a two-channel problem. We label the 
pp and nn channels 1 and 2, respectively, and obtain, 
for the Born amplitude /#°, the matrix 

TABLE I. Self-consistent solutions to model bootstrap equations. 

tB°(s) = 

•go2 A 

-gM 

-gM^ 

S — Sc 

-go2 A 

S Sn J 

(3.15) 

Here, sc=st—4CJJLC
2 is the position of the pole due to 

charged pion exchange. Because we have assumed the 
nucleon masses already equal, IB0 and all matrices which 
are functions of ts0 can be diagonalized by an energy-
independent matrix U: 

1 / 1 1 \ 
tf=tf-i = _ ( ) , (3.16) 

v 5 \ l - 1 / 

reducing this problem to a single-channel one also. We 
have 

r-gcA go2 A 
0 

TB«(s)=UtB°(s)U-l= 
s sn 

gM gM 

o Sc 5 «7J 

(3.17) 

In the original representation the output matrix con
tains the 7T° pole in the form 

*out°(*) = -

-B / go* ~go\ 

\ - g o 2 go2 / s—Mo" 

In the new representation, this becomes 

rout°(*)= 
-B / 0 0 \ 

- M o 2 \ 0 2go2/ 

(3.18) 

(3.19) 

Thus the TT0 is coupled only to the antisymmetric com
bination nn—pp. Since A > 0 , this is the only consistent 
result; TV is attractive in this channel only. 

A 

3.0 

3.5 

8.0 

(m/2M)% 

0.36 
0.68 
0.42 
0.60 
0.80 

(»c/2MY 

0.36 
0.21 
0.42 
0.35 
0.80 

So2 

4.0 
3.6 
2.76 
2.80 
0.75 

w 
4.0 
2.9 
2.76 
2.57 
0.75 

Now we can calculate the amplitude in this channel 
by the same N/D method, again normalizing D to 1 at 
sn. We write T°(s) = N(s)/D(s), and the solution is 

N(s) = 
g2AD(sc) go2A 

D(s) = l-

Then 

s—sn r ° (s'—s 

w J 8t (s'~-

(s'st)*N(s')ds' 

S)(sf — Sn) 

D{s)=\-gMD{sc)\_(z+Zc)-1- (zn-zc)-^ 
+gML(z+zn)-

1-(2zn)-i'], 
where 

Ze=(st—Sc)*. 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

By setting s = s c in (3.22), we obtain a linear equation to 
determine D(sc). The bootstrap conditions are 

£>(MO2) = 0 , (3.24a) 

2g0
2£ = 7V(MoW(Mo2). (3.24b) 

Thus, ZQ can be found explicitly by solving a quadratic 
algebraic equation, and then go2 follows directly by in
serting ixo2 = st—Zo2 into (3.24b). 

Equations (3.14) and (3.24) form four bootstrap 
equations for the four unknown quantities. If values of 
go2 and JJLO exist such that the solutions to Eqs. (3.14) 
have the properties 

Mc = /xo, (3.25) 

gc2=2go2, (3.26) 

one finds by direct substitution that Eqs. (3.24) are 
automatically satisfied, so that these values are, in 
fact, solutions to the whole problem. They are precisely 
the "natural" solutions which embody isotopic spin 
symmetry. 

To carry out the calculation, we take input values 
/x0, go, find jjLCj gc from (3.14), and then calculate output 
values /Zo, <7ofrom (3.24). The self-consistency conditions, 

MO = MO(MO,£O), 

£O=0O(MO,£O), 

define curves in the go, MO plane. The intersections, 
if any, of the MO=£O and go-go curves give the self-
consistent values of /zo, go, and then /xc, gc are given by 
(3.14). For 5 = 1 and the three choices A = 3.0, A = 3.5, 
4̂ = 8 (in units such that st—l), the curves are given in 

Figs. 5(a)-(c), and the self-consistent values in Table I. 
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FIG. 5. The two self-consistency conditions for ju0 and go2. 

(c) 

The curves MO=MO may have more than one branch. In 
each case, the "natural" solution, embodying isotopic 
symmetry, is found, and in two of the cases, a second 
nonsymmetric solution is also found. 

For very small values of A, no solution exists. There 
are apparently no values of A for which a nonsymmetric 
solution exists and a symmetric solution does not in 
this model, although there is no logical reason why this 
could not happen. 

Other models embracing the features of this one may 
also be easily constructed. For example, given the exist
ence of three pions, we infer from the bootstrap principle 
that pion pairs may form vector mesons, that is, p 
mesons. Since Bose statistics do not allow a vector 
state composed of two like pions, only three p mesons, 
built from the three pairs of unlike pions, can appear 
in such a theory. One can also build pions from irp 
states, thus providing a crossed strap to enclose the 
system. From the ir strap, one obtains symmetric equa
tions for the charged and neutral pion masses which, in 
various calculational schemes (such as the one described, 
or,alternatively, the determinantal method), have equal 
pion masses as the only solution (without the necessity 
of assuming all p masses equal). Turning to the p strap 
and using the now known equality of the ir masses, one 
can derive in the same model the equality of the p masses 
and the correct isospin relations among the coupling 
constants consistent with isospin one for both the pion 
and the p meson. 

In conclusion, the bootstrap principle, which we would 

term "well understood," provides the key to many 
properties of nature which heretofore have not been 
understood, not even philosophically. Let us emphasize 
again the salient points. First, either the number of 
particle types, with their various spin-parity assign
ments, which exist in nature is uniquely determined, 
or at least the possibilities are greatly restricted. Second, 
equality of spins and parities among a set of particles 
is not merely consistent with equality of masses, but 
may well guarantee equality of masses in some cases. 
Thus, the remarkable fact that some physically dis
tinguishable particles have equal masses (or at least 
equal apart from electromagnetic effects) is explainable 
in terms of principles that are already well understood. 
Third, certain ratios among coupling constants may also 
be guaranteed, and these, together with the mass 
equalities, define the relationships of an internal sym
metry, such as isospin symmetry.4 Fourth, several 
specific models support this view but also suggest that 
one cannot prove the necessity of isospin symmetry 
without rather detailed studies of the dynamics. 

If this kind of argument is extended to, say, unitary 
spin, then the surprising thing in connection with 
strong interaction symmetries is not that they exist, 
but that they are broken. This may be a difficult 
dynamical problem. 

4 R. H. Capps [Phys. Rev. Letters 10, 312 (1963)] has shown 
that, if mass equalities are assumed, the bootstrap principle im
plies the full SUz symmetry for interactions of pseudoscalar mesons 
and vector mesons. 


